If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-423=-99
We move all terms to the left:
z^2-423-(-99)=0
We add all the numbers together, and all the variables
z^2-324=0
a = 1; b = 0; c = -324;
Δ = b2-4ac
Δ = 02-4·1·(-324)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*1}=\frac{-36}{2} =-18 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*1}=\frac{36}{2} =18 $
| .25(x+4)-3=24 | | 23=12x+11 | | .20x+(10+.125x)=6.25 | | 9c+23=c+31 | | 3t+3=9t-57 | | (2y+11)/3=15 | | 6s=2s+8 | | 6v+13=-53 | | b+65=6b+50 | | 5t-50=-5 | | 1/3s=214 | | 5s-55=3s-15 | | 22-3x=-1 | | 8+x+x=6 | | 2t-58=t | | 5s-84=3s | | 13c-6c=0 | | 3(a+4)9=2a−12 | | t+44=3t | | Y=(12x)+11 | | 2a+72=180 | | 4x-32=8(x-6) | | 3x+9+4x=9 | | 7x+4+3x+13x-8=18 | | -7x+4+5x=2x+9 | | 3(2x-1)=8x+9-6x | | 2/3-1/4t=1/3 | | 2(x+3)=29. | | 8-3t=4 | | 8x+12=-3(x-1)+31 | | -7x-6(-2+3)=27 | | x-30=2x+135 |